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On the velocity distribution of turbulent flow behind a 

gystem cf thin cylindrical rods 

By R. Gran 01sson* 

1« Introduction,  In an earlier paper the author has 

treated the problem of the velocity distribution of turbulent 

flow behind a system of rods spaced at equal distances from e"\ch 

other [1]. For the shear stress of turbulent flow the expression 

in terms of the mixing length due to L. Prandtl was assumed, 

where the mixing length at a certain distance from the rods may 

be put equal to a constant £ [2], The velocity distribution was 

given by a non-linear differential equation of the second order, 

the solution of which can be expressed by quadrature. The purpose 

of this note is to show, how a solution of the differential equa- 

tion can also be expressed in terms of the elliptic functions of 

Weierstrass [ 3 3• 

2. The differential equation. We consider a system 

of cylindrical equidistant rods of infinite length in a plane 

perpendicular to the direction of flow in e  3tream of originally 

constant velocity. The problem is to calculate the distribution 

of velocity in the region behind the rods by means of the ex- 

pression of L. Prandtl for the shear stress in turbulent, flow. 

The mixing length will also be constant in a plane parallel to 

the plane of the rods because of their uniform spacing. 

The coordinate system may be chosen as follows: 

The y-axis parallel to the plane of the rods and perpendicular 

* Visiting Professor of Applied Mathematics at Brown University, 
Providence, Rhode Island. 
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to their axes, the x-axis through the axis of one of the rods and 

parallel to the direction of the undisturbed flow (Fig. 1). The 

components of the velocity nay be noted by u and v, the velocity 

of the undisturbed flow by U. Behind the rod system at a suf- 

ficiently large distance the components of velocity are 

u = U - ulf   v = v-p (1) 

where u-, and v^ are assumed to be small compared with U. In 

establishing the equations of motion all terms of higher order 

of magnitude are dropped; furthermore the pressure term is neg- 

lected. This assumption can be justified bv means of the solu- 

tion obtained. 

The equation of motion in the x-direction is 

u|3i+ v|Hs iar () 
OX     3y   p Oy * 

Introducing u = U - u. , v = v , where u, <<U,v « U, we obtain 

as a first approximation the equation 

OUT  i 3T 
-U T1  = r 7X <2a> ox   p oy 

Because of the periodicity of the rod system, it seems convenient 

to assume the following expression for u-,: 

u-j^ = Af(x)cos a y> (3) 

where a has to be chosen in such a manner that the period of u, 

agrees with the distance X of the rods, i.e. a= 2nA. 

The expression for shear stress according to tha theory 

of mixing length is 
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The differential equation (2a) *'J11 then be transformed into 

sir • -k w ^r (2b) 
where k = 2-t /U is a constant parameter. 

^. The solution of the differential equation. If we 

make the substitution 

ux = AQx 
x F1(y) (5) 

with the condition F-(0) = 1, A may be interpreted as the ampli- 
x o 

tude of the velocity distribution, and we get the following dif- 

ferential equation 

F,(y) = A kF»(y)F"(y) (2c) x oil 

Assume now y = cq, where c is a constant of the dimension length, 

we obtain the following equation 

F (cn) = i&  F'(CT])F»'(cn) (2d) 
1       Q2        1     1 

whero on the right side the differentiations are made with respect 

to the variable rj . As c is arbitrary we choose it so that 

A k/c2 = 1 o 

and obtain the differential equation 

F1 = FJ'FJ (2e) 

wnich, multiplied by F', results in 

F,F« - F«2F" (2f) 
1 1   11 

and once integrated 
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2 rl  3 fl 
(2g) 

where C is a constant of integration, which can be determined by 

the condition that for y = 0 (rpO) F = 1, and F' = 0 or C = 1/2. 

With this value of C we get 

Fi3 = - 1(1 - F2) 
i   2V   r 

From the substitution 

F^ = If* + 1, 

dFx - C-z2 dz/F = 6z2 dz/(l + U-23)
1/<: 

the independent variable n is given by 

(2h) 

(6) 

(6a) 

1 = (6) 
2/3 )0 z dz 

(7) 

which is an elliptic integral of V/eierstrass type. To get a more 

convenient expression for r\  and F, we introduce the parameter w 

by means of the elliptic integral 

noo 
w = 

dz 

z (l*z3-g2z-g )1/2' 
(8) 

where the inverse function 

z = p(w) (9) 

is the elliptic  p-function of V/eierstrass. Py comparison of 

the integrals (7) and (8), we see that in our case g2 = 0, g_ 

Frotri (8) and (9) one obtains 

= -1. 

n = (6) 2/3 
nw, 

w 
p(w)dw = (6)2/3[p (w) - P(w )] (7a) 

o 
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where w corresponds tc z = 0, u to an arbitrary value of z and 

p(u) to the elliptic p-function of 'Weierstracs defined by the 

integral 

p(w ) = - I p(w)dw 

The function F,(n) of velocity distribution is given by Eqs. (6) 

and (9) 

I F1(v/) = {\n3(w^ + lj1/2 (6a) 

On the other hand the derivative of the veierstrass p-function 

is given by 

p»(w) =JUp-Hw) - gpp(w) - g.T>    (10) 

so that the velocity distribution is given by 

F (w) = p»(w) (6b) 

r Thus we have a representation of the variables F-, and n by means 

of the common variable u. Tht result of the numerical calculation 

is shown in Fig, 2 and is obtained by \ising the tables of the 

Jacobian elliptic functions by L. M. Milne-Thomson [if]. The  p - 
f 

function of V/eierstrass can be expressed by the Jacobian elliptic 

function in the following manner 

l+cn(2wH1/2) /nnv 
p (w) = eP + H -75-., (ID 2    l-cn(2wH1A?) 

., x   , 3/2 3n(2wH1/2)dn(2wHl/2) 
nt(w) = JtH^ - -7--— ,       (11a? 

<  l-cn(2wK1/2)r 
where sn, en and dn are the Jacobian elliptic functions, 

, H2 = (o2-ei)(e2-«3) - ?4  • g- 

«• 

8 
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and e., ,  e?,  e->  arc the  roots of the equation 

l+w3 - g2w - g    = 0, 

en being the real root,  whereas e.   and c.   are complex.     In our 

case e0 =  -I/NJ/
1
? =  -O.63OO. 

The independent variable r\   is expressed by the integral 

of the   p -function,  i.e. 

,2/3 Hwo l+cn(2wH1/2) . . 
T = 6°i      [e_ +ri- rr-TTTTpT law 

U w  2   l-cn(2wH1^2) 
(7b) 

The result is in close agreement with the results obtained by 

simple quadrature of an equation corresponding to (7). 

The velocity distribution in the direction parallel to 

the plane of the rods, but perpendicular to their axes is given 

*>y the equation of continuity 

8u, 3v 

5x   3y 

where according to Eq. (5) 

9u, 

i = 0 (12) 

and therefore 

r-^ = -2A x~2F,(y) 

0 n 
v1 = cA x  1 F (cq)dTl 

(5a) 

(12a) 

We now use the oxpressions of F-^(cn) from Eq. (6b), dt} from Eq. 

(7) and z = p(w) from Eq. (9), obtaining 

v, = 62/3 Acx"2 |p(w) p«(w)dw 

= (|)1/3 Acx-2 [p2(w) - p2(wo) ] 

Expressing the p-function by the Jacobian elliptic functions we 
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get a velocity distribution in clo.se agreement with that found 

by simple quadrature (Fig. 3). 

U. Sumr.ic.ry. The velocity distribution behind a system 

of cylindrical equidistant rods is found by using the expression 

of I. Prandtl for the shear stress in turbulent motion (mixing 

length theory). The solution of the differential equation is 

given in terms of the elliptic functions of l.'eierstrass, which 

for the numerical calculation are transformed to the elliptic 

functions of Jacobi. The results are in close agreement with 

those obtained earlier by simple quadrature. 
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